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Abstract

A principle mission at the NAS facility is to establish highly paral-

lel computer systems supporting full scale production use by 1996. In

order to fulfill this objective, parallel systems must support high speed

scalable I/O -- suitable for handling output of large scale numerical

aerodynamic simulation.

Pursuant to this goal, we seek to execute an 'out of core' radix 2

Fast Fourier Transform (FFT) as rapidly as possible. By 'out of core'

we mean that the size of the problem to be solved is too large to fit

in normal memory.

We implement out of core methods on each of two computer ar-

chitectures: the CM5 with a scalable disk array (SDA), and the Intel

iPSC/860 with a Concurrent File System (CFS).

In the case of the out of core FFT, the most successful I/O ap-

proach known is to apply an intermediate transpose of the data when

viewed as a two dimensional matrix [2]. We implement and evaluate

three I/O methods for performing the required transpose. The first

method (row/col) transposes by exchanging rows and columns of the

data set, the second (diagonal) exchanges diagonals, and the third

(recursive) applies a recursive divide and conquer approach.

Only the recursive method can be feasibly implemented on the

CM5 SDA because it does not support 'independent access' -- the

ability for each processor to maintain an independent pointer to a

given file on disk.

We discover that in absolute terms, the CM5 SDA, using the re-

cursive method, outperforms the iPSC/860 CFS using any of the

three methods in solving out of core FFTs. However, the recursive

method shows a rapid decline in performance with problem size. The

iPSC/860 CFS, using the diagonal method or the row/col method

scales well with problem size.



We conclude that if the CM5 SDA had the independent access

provided by the iPSC/860 CFS, then the CM5 SDA would scale as

well as the iPSC/860 CFS, but at a much higher level of absolute

performance.

1 Introduction

We seek to execute an 'out of core' radix 2 Fast Fourier Transform (FFT) as

rapidly as possible. By 'out of core' we mean that the size of the problem to

be solved is too large to fit in normal memory.

Some out of core applications have proven successful using current I/O

technology. For example, [10] has shown that dense matrix solvers run effi-

ciently out of core on the iPSC/860 using the Concurrent File System (CFS).

However, such applications do not reflect the relatively low data reuse that

characterize algorithms that solve NAS problems [10].
The FFT reflects the data reuse inherent in many NAS applications, such

as rapid solution of certain partial differential equations for fluid flow [3]. The

FFT also has many other applications such as in signal and image processing,

and polynomial manipulation [4].

Rapid solution of out of core FFTs requires a transpose operation upon
the data when viewed as a two dimensional matrix [2]. We employ three

alternative transpose methods. One is a naive demand paging implementa-

tion that exchanges the rows and columns of the matrix. The other two are

optimal for some model of an I/O system. A method that exchanges the

diagonals of the matrix is optimal under the Vitter/Shriver I/O model [12].

A method that applies a recursive divide and conquer approach is optimal

under the Vitter/Schriver model when there is no 'independent' access. 'In-

dependent' access is the ability for each processor to maintain an independent

pointer to a given file on disk [12].

We implement the out of core FFTs on each of two parallel systems, the

CM5 Scalable Disk Array (SDA) and the iPSC/860 Concurrent File System

(CFS).
The rest of this paper is organized into a section (2) on our approach,

describing the algorithms and architectures in more detail. Section 3 sum-

marizes our results, describing performance for each architecture for each out

of core algorithm. Section 3 also shows the in core performance for FFTs for



both architecturesto establishthe differencein performanceand scalability
for in corevs. out of coresolutionson thesesystems. Finally, in sections4
and 5 we draw our conclusionsand identify future work.

2 Approach

We compare the performance on the CM5 and the Intel iPSC/860 using three

different I/O approaches for the FFT. The first is optimal, given independent

read head access as provided by the Intel CFS. The second is optimal given

non-independent read head access as provided by the CM5 SDA. Finally, as

a basis for comparison the last algorithm is a naive demand paging algorithm

for the transpose. In the rest of this section the overall FFT implementation

is described, followed by descriptions of each of the three underlying I/O

algorithms. First, we briefly describe the CM5 SDA and Intel CFS I/O

systems.

2.1 The I/O Systems

We employ two different parallel I/O systems. One is the CM5 Scalable Disk

Array (SDA), the other is the Intel Concurrent File System (CFS).

2.1.1 CM5 SDA

The scalable disk array is a collection of sets of high speed commodity disks

directly connected to the CM5 interprocessor communication networks [11].

The SDA has a peak rated performance of 264 MB/sec and a peak storage

capacity of 200 Gbytes. File access is constrained such that all the processors

use the same file pointer. Therefore it is not possible to implement the

diagonal or row column I/O algorithms in parallel, as they require multiple

pointers (independent access) into a file. The SDA must use the theoretically

inferior recursive algorithm. The system at NAS consists of 128 compute

nodes, and 32 active disks, with 37 Gbytes of total storage and a peak I/O

rate of 32 MB/sec.

All code for the CM5 algorithms was written in CM-Fortran. Compilation

was performed using the

-vu -cm5 -extend_source



options to the CMFortran compiler, cmf, version:

[CM5 VecUnit 2.1 Beta 0.1].

In core FFTs were performed via the cmssl library detailed-fit call [7].

2.1.2 Intel CFS

The Concurrent File System is the disk I/O subsystem of the Intel iPSC/860,

a hypercube based MIMD parallel computer. The CFS at the NAS facility

consists of 10 I/O nodes and 10 SCSI disks, with a theoretical peak per-

formance of 10MB/sec, and 7.6 GB of storage [8]. Independent read/write

access is supported by CFS.

All code for the iPSC/860 algorithms was written in Intel Fortran. Com-

pilation was performed using the default options to if77, version:

[if77/NX SGI Rel 4.0].

In core FFTs were performed via the intel math library cfit call [7] in con-

junction with modifications recommended in [3].

2.2 The FFT algorithms

The practical objective is to execute a very large radix 2 FFT as rapidly

as possible. Alternative radix algorithms exhibit similar data movement

patterns and overall complexity [4]. The most obvious implementation choice

is simply to access disk memory at the time that the corresponding data is

required for further computing. This corresponds to a demand paging virtual

memory [9].

One implementation choice for hierarchical memories is known as the

four step FFT [2]. This approach calls for demand paging for the first half

of the computation, then a small amount of added floating point computa-

tion, followed by an intermediate reorganization of the data that sustains the

level of data reuse (locality) present in the first part of the algorithm, and

finally demand paging using the new, superior data layout. The intermedi-

ate reorganization is a transpose of the data when the data is viewed as a 2

dimensional matrix.
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2.3 The Transpose Algorithms

The objective of the transpose algorithm is to rearrange the data on disk so

that in the later stages of the FFT the data can be accessed as efficiently

as possible. The FFT accesses data first in rows, then later in columns.

If the rows are striped across the disks, then the columns will tend to be

concentrated one per disk (or a column on a few disks -- depending on

choice of block size, number of disks, and the problem size). So the FFT

first accesses data efficiently as rows, then inefficiently as columns. This

inefficiency arises because when a column is read, only the disks on which

it resides can be used for I/O bandwidth - the I/O bandwidth provided by

parallel disks is lost. It is at the point of transferring between accessing

by rows to accessing by columns that the transpose can be used, since the

transpose exchanges rows and columns.

We evaluate three transpose algorithms, a 'naive' algorithm, an optimal

algorithm for the case of independent access, and an optimal algorithm in the

case of non independent read head access. The optimality of each of these

algorithms is based on the Vitter/Shriver model of parallel I/O [12].

Any transposition algorithm serves to exchange block (i,j) with block

(j,i) on disk. The objective of a given transpose algorithm is to maximize

the parallelism in each step of the transpose, under the constraints of the

underlying I/O architecture.

One obvious choice is simply to read in each row (or column) and write

it out as a column (or row). This approach risks a load imbalance: a row

striped across disks will transpose into a column concentrated on a single

disk. We implement this 'naive' algorithm and refer to it as the row/col

algorithm.



EXAMPLE 1: Row/Col Algorithm on 4 Disks with 4x4 array:

Start:

DISKO DISK1 DISK2 DISK3

A* B* C* D*

E F G H

I J K L

M N 0 P

Goal:

DISKO DISK1 DISK2 DISK3

A* E I M

B* F J N

C* G K 0

D* H L P

The first starred (*), row (A B C D) is striped across the 4

disks. The row/col algorithm reads in this row efficiently,

since all disks are used to read, but then the entire row

must be written to DISKO, serializing the algorithm.

An algorithm that is theoretically optimal has been derived [12]. An

equivalent algorithm, for problem and block sizes of interest, serves to access

blocks along a diagonal of the matrix. Each element on a diagonal is neither

in the same processor nor in the same memory location. To achieve the

theoretical optimality, any given row of blocks must be striped across all the

disks. This algorithm will be referred to as the diagonal method.



EXAMPLE 2: Diagonal Algorithm on 4 Disks with 4x4 array:

Start:

DISKO DISK1 DISK2 DISK3

A B* C D

E F G* H

I J K L*

M* N 0 P

Goal:

DISKO DISK1 DISK2 DISK3

A E I M*

B* F J N

C G* K 0

D H L* P

Every diagonal, such as the starred (B G L M)

is striped across the 4 disks. The diagonal algorithm

reads in efficiently, since all disks are used to read.

Since the goal position for the diagonal elements is

also striped across all disks, the diagonal algorithm

also writes out efficiently.

The diagonal method algorithm requires independent access. The CM5

SDA does not provide this capability. Therefore, a recursively defined trans-

pose algorithm is applied. The algorithm is defined by dividing the matrix

into its 4 subsquares, exchanging the upper right and lower left hand squares,

and then applying the algorithm recursively on each subsquare. This follows,

since the transpose of the subsquares concatenated with the transpose of the

interior of the subsquares is the transpose of the matrix:
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Some portion of a row striped across all disks must be read or written

during each I/0 transaction, and at the initial stage of the algorithm only

one element of a given row can be placed into the correct column without

disk access conflict. In each stage of the algorithm the number of elements

that can be placed into the proper column doubles. (This corresponds to the

optimal transpose in [1], where M/B is 2.)

EXAMPLE 3: Recursive Algorithm on 4 Disks with 4x4 array:

Start :

DISKO DISK1 DISK2 DISK3

A B C* D*

E F G* H*

I J K L

M N 0 P

INTERMEDIATE Goal:

DISKO DISK1 DISK2 DISK3

A E I M

B F J N

C* G* K 0

D* H* L P

Every subblock, such as the starred (C D G L),

is striped across half the disks. The recursive algorithm

reads in with 50 percent efficiency, since half the disks

are used to read. Since the intermediate goal position

for each subblock is also striped across half the disks,

the recursive algorithm writes at the same efficiency as

it reads.

8



This algorithm has the advantage that it can be used without indepen-

dent read head access, however, the algorithm must repeat each subblock

movement recursively within each subblock, so a factor of log(N) more steps

is required, where N is the number of disks.

3 Results

Here we show the performance of large out of core FFTs on the CM5 and the

iPSC/860. We also include a section on the in core performance of the FFT

on the two machines as a basis for comparing the scalability and performance

of the in core with the out of core capabilities of each system.

3.1 Out of Core FFT Performance

The newer generation CM5 outperforms the iPSC/860 in actual performance

time for out of core FFTs by a factor of five. Below we summarize the

performance results for each of three transpose methods on each architecture.

3.1.1 Row/Col Method

The Row/Col method is theoretically pessimal in the sense that it is expected

to require serialization of data access to an I/O system. On the CM5 this

is so because there is no software mechanism that allows a user program

to access a column of data stored in row major order (this corresponds to

the fact that independent mode is dissallowed on SDA requests) [11]. The

software on the iPSC/860 allows independent access. This does not guarantee

the underlying system will avoid serialization. The CFS does not allocate

blocks in a regular fashion to disks, but instead uses a 'free list' [8]. This

at least partly randomizes the block placement on the disks. As such, the

pessimal performance does not occur on CFS, but neither does the optimal

performance.

Graph 1 shows the performance of the iPSC/860 in solving out of core

FFTs for sizes varying from .25 Mwords to as many as 32 Mwords. (A

complex word occupies 16 bytes and corresponds to one point of data) The
MFLOP number is derived from the total run time of the out of core solver

divided into the total number of floating point operations required for the



given problem size. In particular, an FFT of N complex words requires

5 * N * log N real floating point operations.

We see that the performance using the row/col method does not correlate

well either to the number of processors nor the size of the problem. We see

that for each choice of number of processors, the algorithm scales well - as

problem size increases, performance does not degrade. Overall, it appears to

be difficult to predict the precise performance of the iPSC/860 for a given

number of processors and a given problem size. In general, one can expect

to achieve a maximum of 5 MFLOPS and a minimum of 1 MFLOP for this

out of core algorithm on the iPSC/860, independent of the problem size or

the number of processors.
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3.1.2 Diagonal Method

Again, the diagonal method was not feasible to implement on the CM5. On

the Intel, for the same reason the row/col method was not pessimal, the

diagonal method was not optimal. Repeated measurements did show a mild

superiority of the diagonal method over the row/col method.

Graph 2, for the diagonal method, shows a similar performance profile

as seen in graph 1, for the row/col transpose, except that the performance

numbers are generally 1 MFLOP faster. This represents a significant per-

formance improvement over the row/col method (20 percent in the case of

5MFLOP row/col configurations). However, this improvement does not re-

flect the asymptotic superiority suggested in [5].
Problem size and number of processors are much more significant than

the particular choice of data movement algorithm. For example, consider

the question: What is the most significant performance improvement option

when solving a 16 Mword FFT with 32 processors using the row/col method?

If we reduce the number of processors to 16, then we see a gain in performance

from 1 MFLOP to 5 MFLOP. If instead we switch to the diagonal method,

we only gain from 1 MFLOP to 2 MFLOP.

From this graph we also see that the iPSC/860 exhibits poor processor

scaling -- improving up to 16 processors then declining in the same way as

shown in [8].
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3.1.3 Recursive Method

The CM5 performed best with the recursive transpose method. In fact, this

was the only feasible choice for the CM5 because parallelism was not possible

for the CM5 for either of the other algorithms. The iPSC/860 performed

worst on the recursive transpose method. Since problem sizes that qualify as

out of core increase with the number of processors, and performance drops

rapidly with problem size, no out of core solutions using this approach were

attempted for more than 8 processors on the iPSC/860.

Graph 3 shows the performance of the iPSC/860 in solving out of core

FFTs for sizes varying from .25 Mwords to as many as 8 Mwords. The

decrease in MFLOP rate as problem size increases shows that the recursive

transpose algorithm as implemented on the iPSC/860 does not scale well,

whether on 4 processors or on 8.
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Graph 4 shows the out of core FFT performance for the CM5 for problem

sizes ranging from 4 Mwords to as many as 512 Mwords. We see that as

problem size increases, performance drops. Beside this basic observation,

there are two key features of the performance illustrated by graph 4.

The first feature of interest is the rapid initial reduction in performance.

This corresponds to the logarithmic growth of the number of recursions this

algorithm makes. At first, the logarithmic growth is fairly rapid, resulting in

a rapid reduction in performance. Later, the logarithm grows proportionately

less rapidly, and so the performance declines more slowly. A similar but less

striking effect is also seen on graph 3.
The second issue of interest is the scale of graph 4 compared to graphs

1, 2 and 3. The graphs suggest that the iPSC/860 scales better than the

CM5 -- but the entire set of iPSC/860 graphs fits in a small square in the

lower left hand corner of the CM5 graph, bounded above at 7 MFLOPS and

to the right at 32 Mwords. The CM5 SDA system garners superior absolute

performance for all problem sizes.
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3.2 In Core FFT Performance

In order to better understand the significance of our results, it is useful to

examine the in core performance of the iPSC/860 and CM5 for the FFT. The

following graph shows the performance of the CM5 and the iPSC/860 for a

variety of FFT problem sizes. The CM5 was able to perform much larger in

core FFTs than the iPSC/860. Clearly, the in core rates are overwhelmingly

faster than the out of core rates. We also see that while the FFTs are in

core, they scale well with problem size and number of processors (although

there is a curious drop in performance for the CM5 with 64 processors be-

tween a 4Mword and 8Mword problem size.). Finally, we see that the CM5

outperforms the iPSC/860 by roughly a factor of 5.
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4 Conclusion

For out of core FFT algorithms, the CM5 scales poorly with problem size, but

scales well with the number of processors. The iPSC/860 scales poorly with

the number of processors, but well with the problem size. We find some of the

recommendations for algorithms and architectural capabilities given by the

literature [5] to be valuable. In particular, the need for independent read head

access, and its relationship to the scalability of problem solutions is confirmed

by the good scaling properties exhibited by the row/col and diagonal methods

on the iPSC/860. We also confirm that in core computational capacity is

insignificant compared to I/O performance and flexibility when considering

out of core FFT solution speed.

We conclude then that one key issue in parallel I/O architecture design

is the tradeoff between an architecture without independent access and high

raw performance and a flexible architecture with independent access, but

lower raw performance. In this study, the superior raw performance of the

CM5 SDA outweighed its poor scaling.

5 Future Work

It is not clear that architectures with independent access necessarily have

lower raw performance than those without independent access. The Intel

Paragon with PFS should be evaluated using the same methods applied here

to determine the scalability of the more flexible design entailed in CFS. Also,

the restrictvol feature of CFS and PFS could provide for higher raw perfor-

mance. The restricvol command directs to which subset of disks a given file

is stored. This capability should be explored.
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